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We propose a novel method to embed a functional magnetic resonance
imaging (fMRI) dataset in a low-dimensional space. The embedding
optimally preserves the local functional coupling between fMRI time
series and provides a low-dimensional coordinate system for detecting
activated voxels. To compute the embedding, we build a graph of
functionally connected voxels. We use the commute time, instead of the
geodesic distance, tomeasure functional distances on the graph. Because
the commute time can be computed directly from the eigenvectors of
(a symmetric version) the graph probability transition matrix, we use
these eigenvectors to embed the dataset in lowdimensions.After clustering
the datasets in low dimensions, coherent structures emerge that can be
easily interpreted. We performed an extensive evaluation of our method
comparing it to linear and nonlinear techniques using synthetic datasets
and in vivo datasets. We analyzed datasets from the EBC competition
obtainedwith subjects interacting in an urban virtual reality environment.
Our exploratory approach is able to detect independently visual areas
(V1/V2, V5/MT), auditory areas, and language areas. Our method can
be used to analyze fMRI collected during “natural stimuli”.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

At a microscopic level, a large number of internal variables
associated with various physical and physiological phenomena
contribute to dynamic changes in functional magnetic resonance
imaging (fMRI) datasets. FMRI provides a large scale (as compared to
the scale of neurons) measurement of neuronal activity, and we expect
that many of these variables will be coupled resulting in a low-
dimensional set for all possible configurations of the activated fMRI
signal. We assume therefore that activated fMRI time series can be
parametrized by a small number of variables. This assumption is
consistent with the usage of low-dimensional parametric models for
detecting activated voxels (Petersson et al., 1999). This assumption is
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also consistent with the empirical findings obtained with principal
components analysis (PCA) and independent components analysis
(ICA) (Biswal andUlmer, 1999;McKeown et al., 2003), where a small
number of components are sufficient to describe the variations of most
activated temporal patterns. Both PCA and ICA make very strong
assumptions about the components: orthogonality and statistical
independence, respectively. Such constraints are convenient mathe-
matically but have no physiological justification, and complicate
unnecessarily the interpretation of the components (Friston, 1998). A
second limitation of PCA and ICA is that bothmethods only provide a
linear decomposition of the data (Friston, 2005). There is no
physiological reason why the fMRI signal should be a linear
combination of eigen-images or eigen-time series. In practice, the
first components identified by PCA are often related to physiological
artifacts (e.g. breathing), or coherent spontaneous fluctuations (Raichle
and Mintun, 2006). These artifacts can be responsible for most of the
variability in the dataset. Stimulus triggered changes, which are much
more subtle, rarely appear among the first components.

The contribution of this paper is a novel exploratory method to
construct an optimal coordinate system that reduces the dimension-
ality of the dataset while preserving the functional connectivity
between voxels (Sporns et al., 2000). First, we define a distance
between time series that quantifies the functional coupling (Fox
et al., 2005), or connectivity between the corresponding voxels. We
then construct an embedding that preserves this functional
connectivity across the entire brain. After embedding the dataset in
a lower dimensional space, time series are clustered into coherent
groups. This new parametrization results in a clear separation of the
time series into: (1) response to a stimulus, (2) coherent physiological
signals, (3) artifacts, and (4) background activity. We performed an
extensive evaluation of our method comparing it to linear and
nonlinear techniques using synthetic datasets and in vivo datasets.

Methods

Overview of our approach

Our goal is to find a new parametrization of an fMRI dataset,
effectively replacing the time series by a small set of features, or
coordinates, that facilitate the identification of task-related hemody-
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Fig. 1. The network of functionally correlated voxels, represented by a
graph, encodes the functional connectivity between time series.

Fig. 3. Construction of the embedding.
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namic responses to the stimulus. The new coordinateswill also be able
to reveal the presence of physical or physiological processes that have
an intrinsic low dimension. Such processes can be described with a
small number of parameters (dimensions) in an appropriate
representation (set of basis functions). These time series should be
contrasted with noise time series that have a very diffuse representa-
tion in any basis. Example of such low-dimensional processes
includes task-related hemodynamic responses, non-task-related
physiological rhythms (breathing and heart beating motion). We
expect that only a small fraction of all time series will have a low-
dimensional representation. The remaining time series will be
engaged in a spontaneous intrinsic activity (Raichle and Mintun,
2006). We call these time series background time series. As shown in
our experiments, background time series are more complex, and
cannot be well approximated with a small number of parameters.

We now introduce some notations that will be used throughout
the paper. Let X denote an fMRI dataset composed of T scans, each
comprised of N voxels, which is represented as a N×T matrix,

X ¼
x1 1ð Þ : : : x1 Tð Þ
v v v

xN 1ð Þ : : : xN Tð Þ

2
4

3
5: ð1Þ

Row i of X is the time series xi=[xi(1),…, xi(T)] generated from
voxel i. Column j is the jth scan unrolled as a 1×N vector. In this
work, we regard xi as a point in RT , with T coordinates.
Fig. 2. The eigenvector ϕk as a function defined on the nodes of the graph.
We seek a new parametrization of the dataset that optimally
preserves the local functional coupling between time series. Most
methods of reduction of dimensionality used for fMRI are linear:
each xi is projected onto a set of components ϕk. The resulting
coefficientsbxi, ϕkN , k=0,…, K−1 serve as the new coordinates
in the low-dimensional representation. However, in the presence of
nonlinearity in the organization of the xi in RT , a linear mapping
may distort local functional correlations. This distortion will make
the clustering of the dataset more difficult. Our experiments with in
vivo data confirm that the subsets formed by the low-dimensional
time series have a nonlinear geometry and cannot be mapped onto
a linear subspace without significant distortion. We propose
therefore to use a nonlinear map Ψ to represent the dataset X in
low dimensions. Because the map Ψ is able to preserve the local
functional coupling between voxels, low-dimensional coherent
structures can easily be detected with a clustering algorithm. Fi-
nally, the temporal and the spatial patterns associated with each
cluster are examined and the cluster that corresponds to the task-
related response is identified. In summary, our approach includes
the following three steps:

(i) Low-dimensional embedding of the dataset;
(ii) Clustering of the dataset using the new parameterization;
(iii) Identification of the set of activated time series.

The connectivity graph: A network of functionally correlated voxels

In order to construct the nonlinear mapΨwe need to estimate the
functional correlation between voxels. We characterize the func-
tional correlation between voxels with a network. Similar networks
have been constructed to study functional connectivity in (Achard
et al., 2006; Caclin and Fonlupt, 2006; Eguíluz et al., 2005; Fox
et al., 2005; Sporns et al., 2000). We represent the network by a
graph G that is constructed as follows. The time series xi originating
from voxel i becomes the node (or vertex) xi of the graph

1. Edges
between vertices quantify the functional connectivity. Each node xi
is connected to its nn nearest neighbors according to the Euclidean
distance between the time series, ||xi−xj|| = (Σt = 1

T (xi(t)−xj(t))
2)1/2

(Fig. 1). The weight Wi,j on the edge {i, j} quantifies the functional
proximity between voxels i and j and is defined by

Wi;j ¼ e� jj xi�xj jj 2=r2

0
; if xi is connected to x j; otherwise:

�
ð2Þ
1 We slightly abuse the notation here: xi is a time series, as well as a node
on the graph.



Fig. 4. Left: low-dimensional embedding of a block design dataset (see section Results). Each dot i isΨ(xi), the image of the time series xi through the mapping
Ψ. Right: the Ψ(xi) are projected on the sphere, and the projections are clustered on the sphere.

Fig. 5. Left: synthetic brain: activation (white), non-activation (gray), outside the brain (black). Right: stimulus time series .

Fig. 6. Activated (red) and background (black) time series projected on the first two PCA components (left), and parametrized by Ψ (right).
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Fig. 7. Left: clustering of {Ψ(xi), i=1,…, N} into 2 clusters: activated (red) and background (black). Right: activated (white) and background (gray) pixels.

Fig. 8. ROC curves: comparison of our approach to the GLM.

889X. Shen, F.G. Meyer / NeuroImage 41 (2008) 886–902
The scaling factor σ modulates the definition of proximity
measured by the weight (Eq. (2)). If σ is very large, then for all the
nearest neighbors xj of xi, we have Wi,j≈1 (see Eq. (2)), and the
transition probability is the same for all the neighbors, Pi,j=1 /nn.
This choice of σ promotes a very fast diffusion of the random walk
through the dataset, and blurs the distinction between activated and
background time series. On the other hand, if σ is extremely small,
then Pi,j=0 for all the neighbors such that ||xi−xj||N0. Only if the
distance between xi and xj is zero (or very small) the transition
probability is non zero. This choice of σ accentuates the difference
between the time series, but is more sensitive to noise. In practice,
we found that the universal choice

r ¼ n�min
ibj

jj xi � xj jj

where n ∈ (0, 5) (we used n=2 for all experiments) is usually
optimal.

The weighted graph G is fully characterized by the N×N
weight matrix W with entries Wi, j. Let D be the diagonal degree
matrix with entries Di;i ¼

P
j Wi; j. The spatial coordinates of the

voxels i and j are currently not used in the computation of Wi,j. We
know that spatial information can be useful: truly activated voxels
tend to be spatially clustered. However, spatial proximity should be
measured along the cortical ribbon, and not in the 3-D volume.

A new way to measure functional distances between voxels

Once the network of functionally connected voxels is created, we
need to define a distance between any two vertices xi and xj in the
network. This distance should reflect the topology of the graph, but
should also be able to distinguish between strongly connected vertices
(when the voxels i and j belong to the same functional region) and
weakly connected vertices (when i and j have similar time series xi and
xj , but belong to different functional regions). The Euclidean distance
that is used to construct the graph is only useful locally: we can use it
to compare voxels that are functionally similar, but we should use a
different distance to compare voxels that may not be functionally
similar. As shown in the experiments, the shortest distance δ(xi, xj)
between two nodes xi and xjmeasured along the edges of the graph is
very sensitive to short-circuits created by the noise in the data.
A standard alternative to the geodesic distance is the commute time,
κ(xi, xj), that quantifies the expected path length between xi and xj for
a random walk started at xi (Bremaud, 1999).

We review here the concept of commute time in the context of a
random walk on a graph. We show how the commute time can be
computed easily from the eigenvectors of D−1/2WD−1/2. Let us
consider a randomwalkZn on the connectivity graph. Thewalk starts at
xi, and evolves on the graph with the transition probability P=D

−1W,

Pi; j ¼ Wi; j=
X
j

Wi; j

 !
: ð3Þ

If the walk is at xi, it jumps to one of the nearest neighbors, xj, with
probability Pi,j. The walk first visits all voxels in the same functional
area before jumping to a different functional area. Indeed, if voxels i
and j are in the same functional area, and voxel k is in a different
functional area, then we expect that ||xi−xj||≪ ||xi−xk||, and therefore
Pi,j≫Pi,k. This observation can be quantified by computing the
average hitting time that measures the number of steps that it takes



Fig. 9. Three-dimensional embedding: {Ψ(xi), i=1,…, 3084}: cluster I (red), cluster II (blue), cluster III (green), and background (black). Time series marked by
a circle are shown in Fig. 11. Right: residual error εR(K) as a function of the number of coordinates K.
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for the random walk started at xi to hit xj for the first time (Bremaud,
1999),

H xi; xj
� � ¼ Ei Tj

� �
with Tj ¼ min nz0; Zn ¼ jf g:

The hitting time is not symmetric, and cannot be a distance on
the graph. A proper distance is provided by a symmetric version of
H, called the commute time, (Bremaud, 1999),

j xi; xj
� � ¼ H xi; xj

� �þ H xj; xi
� � ¼ Ei Tj

� �þ Ej Ti½ �: ð4Þ

As one would expect, κ(xi, xj ) increases with the geodesic
distance δ(xi, xj). Unlike the geodesic distance, κ(xi, xj) decreases
when the number of paths between the nodes increases.

Commute time and clustering coefficient
The commute time is greatly influenced by the richness of the

connections between any two nodes of the network. This concept can
be quantified by the clustering coefficient. Let xi be a node with nn
neighbors. The neighbors of xi may, or may not, be neighbors of one
another. To asses the transitivity of the connections, we can compute
Fig. 10. Low-dimensional embedding obtaine
the total number of edges, ei , that exist between all the neighbors of
xi. The clustering coefficient (Albert and Barabási, 2002) is Ci=2ei /
[nn(nn−1)]. The maximum value ofCi is 1 and is achieved when each
neighbor of xi is connected to all the other neighbors of xi (they form a
clique). If the average clustering coefficient, computed over all nodes
of the network, is close to 1, then there will always be multiple routes
between any two nodes xi and xj , and the commute time will remain
small. Eguíluz et al. (2005) measured clustering coefficients in
networks of functionally connected voxels in fMRI that were
indicative of scale-free small-world networks. Achard et al. (2006)
identified networks of richly connected hubs in the cortex, and have
also shown that the functional network (as measured by fMRI)
exhibits the “small world” property. The commute time provides a
distance on the graph that takes into account the abundance of
connections that may exist between two nodes of the graph.

A spectral decomposition of commute time
As explained in the Appendix, the commute time can be

conveniently computed from the eigenvector ϕ1,…,ϕN of the
symmetric matrix D−1/2PD−1/2 . The corresponding eigenvalues are
d by PCA (left), and ISOMAP (right).
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between −1 and 1, and can be labeled such that −1≤λN…≤λ2bλ1=1.
Each eigenvector ϕk is a vector withN coordinates, one for each node
of the graph G. We therefore write

/k ¼ /k 1ð Þ;/k 2ð Þ; N ;/k Nð Þ½ �T ð5Þ
to emphasize the fact that we consider ϕk to be a function defined on
the nodes of the graph (Fig. 2). According to Eq. (16), the commute
time can be expressed as

j xi; xj
� � ¼XN

k¼2

1
1� kk

/k ið Þffiffiffiffi
pi

p � /k jð Þffiffiffiffi
pj

p
 !2

; ð6Þ

where pi ¼ di=
P

i;j Wi;j is the stationary distribution associated with
P, πT P=πT. The right hand side of Eq. (6) is the sum of N−1 squared

contributions of the form /k ið Þ= ffiffiffiffi
pi

p � /k jð Þ= ffiffiffiffi
pj

p� 	
=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kk

p
.

Each contribution is the difference between two terms: /k ið Þ= ffiffiffiffi
pi

p
and /k jð Þ= ffiffiffiffi

pj
p

, which are associated with nodes xi and xj,
respectively.
Fig. 11. Time series from the cluster I (A), cluster II (B), and cluster III (C).
Embedding of the dataset

We define a mapping from xi to a vector of size N–1,

xii
1ffiffiffiffi
pi

p /2 ið Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p ; N N ;
/N ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kN

p

 �T

: ð7Þ

The idea was first proposed in (Bérard et al., 1994) to embed
manifolds. Recently, the same idea has been revisited in the machine
learning literature (Belkin and Niyogi, 2003; Coifman and Lafon,
2006). According to Eq. (6), the commute time is simply the Euclidean
distance measured between the new coordinates. In practice, we need
not use all the eigenvectors in Eq. (7). Indeed, because −1≤λN…≤
λ2bλ1=1 we have 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
N1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k3

p
N: : : 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kN

p
. We

can therefore neglect/k jð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kk

p
in Eq. (7) for large k, and reduce

the dimensionality of the embedding by using only the first K
coordinates. Finally, we define the mapΨ from RT to RK ,

xiiC xið Þ ¼ 1ffiffiffiffi
pi

p /2 ið Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p ; N N ;
/Kþ1 ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kKþ1

p

 �T

: ð8Þ

The low-dimensional parametrization (Eq. (8)) provides a good
approximation when the spectral gap λ1−λ2=1−λ2, is large. The
construction of the embedding is summarized in Fig. 3. Unlike
PCA which gives a set of vectors on which to project the dataset,
the embedding (Eq. (8)) directly yields the new coordinates for
each time series xi. The new coordinates of xi are given by
concatenating the ith coordinates of ϕk, k=2,…, K+1. The first
eigenvector ϕ0 is constant and is not used.

What is the connection to PCA?
Because each ϕk is also an eigenvector of the graph Laplacian,

L ¼ I� D
1
2PD�1

2, it minimizes the “distortion” induced by ϕ and
measured by the Rayleigh ratio (Belkin and Niyogi, 2003),

min
/; jj / jj ¼1

P
i; j Wi; j / ið Þ � / jð Þð Þ2P

i di/
2 ið Þ ; ð9Þ

where ϕk is orthogonal to the previous eigenvector {ϕ0,ϕ1,…,
ϕk− 1}. The gradient of ϕ at the vertex xi on the graph can be
computed as a linear combination of terms of the form (ϕ(i)−ϕ(j)),
where j and i are connected. Therefore the numerator of the
Rayleigh ratio (Eq. (9)) is a weighted sum of the gradients of ϕ at
all nodes of the graph, and quantifies the average local distortion
created by the map ϕ. A function that minimizes (Eq. (9)), will still
introduce some global distortions. Only an isometry will preserve
all distances between the time series, and the isometry which is
optimal for dimension reduction is given by PCA. However, as
shown in the experiments, the first PCA components are usually
not able to capture the nonlinear structure formed by the set of time



Fig. 12. Eigenvectors ϕ2 and ϕ3 visualized as images.

Fig. 13. Top row: voxels are color-coded according to the cluster color (except for the background cluster). We interpret cluster I (red) as voxels in the visual
cortex recruited by the stimulus. Bottom row: activation maps obtained using the linear regression model (p=0.001).
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Fig. 14. Three-dimensional embedding. Top: one-trial (blue) and two-trial (red) conditions are well separated. Bottom: cluster I (blue), cluster II (red) and
background (green). Time series marked by a circle are shown in Fig. 16.

893X. Shen, F.G. Meyer / NeuroImage 41 (2008) 886–902
series. As a result, PCA fails to reveal the organization of the
dataset in terms of low-dimensional activated time series and
background time series. Thirion and Faugeras (2003) have used
kernel PCA to analyze the distributions of the coefficients of a
model fitted to fMRI time series. A block design fMRI dataset from a
macaque monkey is studied. By visual inspection, the authors show
that their method can organize the coefficients according to the
relative strength of the activation. The eigenvectors of the Laplacian
have also been used to construct maps of spectral coherence of fMRI
data in (Thirion et al., 2006).

How many new coordinates do we need?
We can estimate K, the number of coordinates in the embedding

(Eq. (8))), by calulating the number of ϕk needed to reconstruct the
low-dimensional structures present in the dataset. As opposed to
PCA, the embedding defined by Eq. (8) is not designed to
minimize the reconstruction error, it only minimizes the average
local distortion (Eq. (9)). Nevertheless, we can take advantage of
the fact that the eigenvectors {ϕk} constitute an orthonormal basis
for the set of functions defined on the vertices of the graph (Chung,
1997). In particular, we make the trivial observation that the scan at
Fig. 15. Low-dimensional embedding obtained by PCA (left), and ISOMAP (ri
time t, x(t)= [x1(t),…xN(t)]
T, is a function defined on the nodes of

the graph: x(t) at node xi is the value of the fMRI signal at voxel i,
xi(t). We can therefore expand x(t) using the ϕk,

x tð Þ ¼
XK
k¼1

b x tð Þ;/kN/k þ
XN

k¼Kþ1

bx tð Þ;/kN/k ¼ x̂K tð Þ þ r tð Þ;

where x̂K tð Þ ¼PK
k¼1 bx tð Þ; /kN/k is the approximation to the tth

scan using the first K eigenvectors, and r(t) is the residual error. We
can compute a similar approximation for all the scans (t=1,…,T),
and compute the temporal average of the relative approximation
error at a given voxel i,

ei Kð Þ ¼
PT

t¼1 xi tð Þ � x̂Ki tð Þ
� 	2
PT

t¼1 x
2
i tð Þ : ð10Þ

Finally, one can compute the average of εi(K) over all a group of
voxels in the same functional areaR; eR Kð Þ ¼ P

i∈R ei Kð Þ� �
=jRj.

We expect εR(K) to decay fast with K if the time series withinR are
ght). One-trial condition (blue) and two-trial condition (red) are mingled.



Fig. 16. Four representative time series from cluster I (A), cluster II with
one-trial condition (B), and from cluster II with two-trial condition (C).
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well approximated by ϕ1,…,ϕK. In practice, for each region R we
find KR after which εR stops having a fast decay. We then choose K
the number of coordinates to be the largest KR among all regionsR.
Examples are shown in Fig. 9-right, where K is chosen at the “knee”
of the curves εR (K).

k-Means clustering

The map Ψ defined by (8) provides a set of new coordinates,
Ψ(xi), for each xi. We cluster the set {Ψ(xi), i=1,…, N} into a small
number of coherent structures and a large background component.
We use a variation of the k-means clustering algorithm for this task.
The low-dimensional parameterization of the dataset usually has a
“star” shape (Fig. 4-left), where the out-stretching “arms” of the star
are related to activated time series or strong physiological artifacts,
and the center blob corresponds to background activity. Our goal is
to segment each of the “arms” from the center blob. We project all
the Ψ(xi) on a unit sphere centered around the origin (Fig. 4-right).
We then cluster the projections on the sphere: the distance between
two points on the sphere is measured by their angle. The center
component (shown in black in Fig. 4-left) is usually spread all over
the sphere, and is mixed with the branches (Fig. 4-right). The time
series from the background component can be separated from the
other time series by measuring the distance of Ψ(xi) to the origin
(Fig. 4-left). The number of clusters can be chosen to be equal to
K+1. This choice is based on experience that each eigenvector
(each dimension) will contribute to an independent arm, and the
background time series will contribute to the last cluster. This
choice may over-segment the dataset. This is usually obvious from
the visual inspection scatter plot, and the corresponding spatial
maps. We iteratively refine the estimate of the number of clusters,
by merging small clusters at each iteration.

Results

In this section we describe the results of experiments conducted on
synthetic and in vivo datasets. We construct the embedding according
to the algorithm described in Fig. 3, and the clustering algorithm,
described in k-Means clustering, divides the embedded dataset into
coherent groups. We interpret the coherent structures in terms of a
task-related hemodynamic response, and physiological artifacts.
Voxels that correspond to task-related activation are identified and
activation maps are generated accordingly. We evaluate our approach
using two different criteria. First, we compare the parameterization
created by our approach with the parametrization produced by PCA.
The comparison is based on our ability to identify and extract well
defined structures from the new parameterization. Our second
criterion is the comparison of the activation maps obtained with our
approach with the ones generated by the General Linear Model
(GLM). Five datasets are selected for the analysis: a synthetic dataset,
a block design dataset, an event-related dataset, and two datasets from
the EBC competition University of Pittsburgh (2007).

Synthetic data

The synthetic datasets were designed by blending activation
into background, non-activated, time series that were extracted
from a real in vivo dataset (described in In vivo data I: Block
design dataset). We discarded time series exhibiting large variance.
Activated time series were constructed by adding an activation
pattern f(t) to the background time series. The activation pattern f(t)
was obtained by convolving the canonical hemodynamic filter h(t)
used in SPM (Friston, 2005)

h tð Þ ¼ a
t
d1

� 
a1

e� t�d1ð Þ=b1 � c
t
d2

� 
a2

e� t�d2ð Þ=b2 ; ð11Þ



895X. Shen, F.G. Meyer / NeuroImage 41 (2008) 886–902
with the stimulus time-series g(t) (Fig. 5-left). The two parameters α
and b1 were randomly distributed according to two uniform
distributions, on [0.8, 1.2] and on [5, 10] respectively. The other
parameters were fixed and chosen as follows, a1=6, a2=12, b2=0.9,
and c=0.35. By varying b1 and α independently, we generated a
family of hemodynamic responses with different peak dispersions
and scales. We generated 20 independent realizations according to
this design. Each dataset consisted of a white disk of activated voxels
inside a circular gray brain of background voxels (Fig. 5-left). Black
voxels were in the air. There were altogether 1067 voxels inside the
circular brain, with 97 activated voxels, (9% activation). Fig. 6-left
shows the projections on the first two principal axes of the 1067 time
series of one realization. The projections are color-coded according
to their status: activated (red diamond) and background (black circle).
The parameterization given by our approach is shown in 6-right. We
used only K=2 coordinates in (8) for Ψ. Activated time series are
distributed along a thin strip that extends outward from the main
cluster. This low-dimensional structure is compact and easy to
identify. In comparison, the two dimensional representation given by
PCA (Fig. 6-left) is less conspicuous: activated time series (red)
overlap with background time series (black). After embedding the
dataset into two dimensions, the dataset is partitioned into two
clusters. Fig. 7-left shows the result of clustering: the labels (red for
activated, black for background) are based on the clustering only. The
corresponding activation map is shown in Fig. 7-right. We compared
our algorithm with a linear model equipped with the perfect
knowledge of the hemodynamic response h(t) (with b1=1 and
α=1). A Student t-test was applied to the regression coefficient to test
its significance, and voxels with a p-value smaller than a threshold
were considered activated. Fig. 8 provides a quantitative comparison
of our approach with the linear model using a receiver operator
characteristic (ROC) curve. The true activation rate (one minus the
type II error) is plotted against the type I error (false alarm rate). The
ROC curve was computed over 20 trials. Each trial included different
activation strengths α. In this experiment, the linear model has access
to an oracle, in the form of the perfect knowledge of the hemodynamic
response h(t), and should therefore perform very well. In fact, if the
Fig. 17. Top row: activation maps: cluster I (blue), cluster II (red). Bottom row
noise added to f(t) were to be white, we know from the matched filter
theorem that the linear model would provide the optimal detector.
Here, the noise is extracted from the data, and is probably not white
(Bullmore et al., 2001). As shown in Fig. 8, our approach performs as
well as the GLM for a type I error in the range [0.003, 0.009]. At low
type I error, our approach misses activations.

In vivo data I: Block design dataset

We apply our technique to a block design dataset that demonstrates
activation of the visual cortex (Tanabe et al., 2002). A flashing
checkerboard image was presented to a subject for 30 s, and a blank
image was presented for the next 30 s. This alternating cycle was
repeated four times. Images were acquired with a 1.5T Siemens
MAGNETOM Vision equipped with a standard quadrature head coil
and an echoplanar subsystem (TR=3 s, xy dimension: 128×128,
voxel size=1.88×1.88×3 mm, 12 contiguous slices). Eighty images
were obtained. We analyze a volume that contains the calcicarin
cortex (Brodman areas 17) (Fig. 12). There are altogether 3084 intra-
cranial time series in the volume. The linear trend of each time series is
removed. Fig. 9-left displays the image of the time series by the
embedding, Ψ(xi), i=1,…, 3084. The time series are color-coded
according to the result of the clustering. The dataset is partitioned into
four clusters. For comparison purposes, we show the embedding
generated by ISOMAP (Tenenbaum et al., 2000) (Fig. 10-left), and the
embedding obtained by projecting the time series on the first three
PCA axes (Fig. 10-right). ISOMAPmakes it possible to reconstruct a
low-dimensional nonlinear structure embedded in high dimension.
The algorithm computes the pairwise geodesic distance between any
two points in the dataset, and uses multidimensional scaling to embed
the dataset in low dimension. As explained in A new way to measure
functional distance between voxels, the geodesic distance is not
appropriate for fMRI data that are very noisy. For this reason an
embedding based on commute time ismore robust. The representation
given by PCA and ISOMAP, shown in Fig. 10 left and right, are less
conspicuous than the representation obtained by our approach. No
low-dimensional structures are apparent in these two plots. The plot of
: activation maps obtained using the linear regression model (p=0.005).



Fig. 18. Subject 14: views of the embedded dataset using ϕ3, ϕ4, ϕ5 (left), ϕ4, ϕ5, ϕ6 (center), and ϕ5, ϕ6, ϕ3 (right). The labels are obtained after clustering the datasets into six clusters. The background activity
(maroon cluster) is centered around 0.
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the residual error (Fig. 9-right) indicates that eigenvectors ϕ2 and ϕ3

create the largest drop in the residual energy, and should be the most
useful. We use K=3 coordinates: ϕ2, ϕ2 and ϕ4 to embed the dataset.
In order to interpret the role of the clusters, we select several time
series from each cluster (identified by circle in the scatter plot in
Fig. 9) and plot them in Fig. 11. The time series from the red cluster
(Fig. 11-A) are typical hemodynamic responses to a periodic stimulus.
The time series at the tip of the red cluster, marked by a red circle, is
the red curve in Fig. 11-A. It is the strongest activation pattern. Times
series in the middle of the red cluster (blue and black circles) exhibit
weaker activation (blue and black curves). We interpret cluster I as
voxels activated by the stimulus. The embedding has organized the
time series according to the strength of the activation: strong
activation at the tip and weak activation at the base of the branch
(close to the background activity). The time series from the blue
cluster have a high frequency (Fig. 11-B), and are grouped together
inside the brain (Fig. 12). These time series could be related to non-
task-related physiological responses, such as a pulsating vein. Finally,
the time series from the green cluster are less structured (Fig. 11), and
are scattered across the region of analysis (Fig. 12). We were not able
to interpret the physiological role of these time series.

So what do the eigenvectors look like?
As explained in A new way to measure functional distances

between voxels, we consider the eigenvectors ϕk to be functions of
the nodes i of the graph. We can therefore represent ϕk as an image:
each voxel xi is color-coded according to the value of ϕk(i). The
majority of the values of ϕ2 are positive (deep red, in Fig. 13-left).
A few voxels take negative values (yellow and cyan in Fig. 13-
left). The nodal lines (where ϕ2 changes sign) are localized around
the area of activation in the visual cortex. We can check in Fig. 9
that the activated time series (red cluster) have a negative ϕ2

coordinate. In fact, ϕ2 is known as the Fiedler vector (Chung,
1997) and is used to optimally split a dataset into two parts.
(Fig. 13). We computed the activation map obtained using a GLM.
The regressor is computed by convolving the haemodynamic
response defined by Eq. (11) with the experimental paradigm. The
activation map (thresholded at p=0.001) is shown in Fig. 12, and is
consistent with the activation maps obtained by our approach.

In vivo data II: Event-related dataset

We apply our method to an event-related dataset. Buckner et al.
(2000) used fMRI to study age-related changes in functional
anatomy. The subjects were instructed to press a key with their
right index finger upon the visual stimulus onset. The stimulus
lasted for 1.5 s. Functional images were collected using a Siemens
1.5-T Vision System with an asymmetric spin-echo sequence
sensitive to BOLD contrast (volume TR=2.68 s, xy dimension:
64×64, voxel size: 3.75×3.75 mm, 16 contiguous axial slices).
Each run consists of 128 TRs. For every 8 images, the subjects
were presented with one of the two conditions: (i) the one-trial
condition where a single stimulus was presented to the subject, and
(ii) the two-trial condition where two consecutive stimuli were
presented. The inter-stimulus interval of 5.36 s. was sufficiently
large to guarantee that the overall response would be about twice as
large as the response to the one-trial condition. We analyzed one
run. After discarding the first and last four scans, the run included
15 trials (8 one-trial and 7 two-trial conditions) of 8 temporal
samples. Time series from the one-trial and two-trial conditions
were averaged separately. Therefore, each voxel gave rise to two
average time series of 8 samples. The linear trend was removed
from all average time series. The results published in (Buckner
et al., 2000) show activation in the visual cortex, motor cortex, and
cerebellum. We focus our analysis on four contiguous axial slices
(7, 8, 9 and 10) that extend from the superior caudate nucleus to the
midlevel diencephalon. We extract a region (1025 intra-cranial
voxels) that extends from the occipital posterior horn of the lateral
ventricles until the end of the occipital lobe. The total number of
time series included in our analysis is 2050: two time series (one-
trial and two-trial conditions) of T=8 samples for each voxel.

Embedding the dataset in 3 dimensions
We display in Fig. 14-left the 2050 time series after embedding the

dataset in three dimension. The one-trial condition time series (blue)
form a blob at the center. The two-trial (red) conditions time series
form a “V” (Fig. 14-right). Both branches of the “V” are nearly one
dimensional and are aligned withϕ2 andϕ4 . The branch aligned with
ϕ2 also includes one-trial condition time series at the base of the
branch. The branch aligned with ϕ4 contains only two-trial condition
time series. The dataset was partitioned into three clusters (Fig. 14-
right). We compare our embedding to the embedding generated by
ISOMAP (Fig. 15-left) and PCA (Fig. 15-right). No low-dimensional
structures emerge from the representations given by PCAor ISOMAP,
and two-trial and one-trial time series are mixed together. The
eigenvectors ϕ2 and ϕ4 create the largest drop in the residual energy,
and are the most useful coordinates. We use K=3 coordinates: ϕ2, ϕ3

and ϕ4 to embed the dataset. To determine the role of the clusters, we
select three groups of four time series (identified by circles in Fig. 14-
right) and we plot them in Fig. 16. Time series from cluster I all have
an abrupt dip at t=7. The corresponding voxels are located along the
border of the brain (Fig. 17). The original time series (before
averaging) suffer from a sudden drop at time 95, which could be
caused by a motion artifact, that affects the average time series. There
are two groups of time series selected from cluster II: two two-trial
condition time series located at the tip of the branch, and two one-trial
condition time series located at the border with the background
cluster. Time series from cluster II have a shape similar to an
hemodynamic response (Fig. 16-B and C), and the corresponding
voxels are located in the visual cortex (Fig. 17). Therefore, we
hypothesize that cluster II contains times series recruited by the
stimulus. Interestingly, the embedding has organized the time series
along the branch of cluster II according to the strength of the
activation: from two-trial condition (strong response) at the tip, to one-
trial condition (weak response) at the stem (close to the background
time series). This is a remarkable result since no information about the
stimulus, or the type of trial was provided to the algorithm. Fig. 17
shows the location of the voxels corresponding to the time series of
cluster I (blue) and II (red). For comparison purposeswe computed the
activation map obtained using the GLM. The averaged time series
from the two-trial condition are used for the regression analysis. We
use the hemodynamic response function defined by (Dale and Buckner,
1997), h(t)=((t−δ) /τ)2 e(t−δ) / τ, where δ=2.5, τ=1.5. The regressor
was given by g(t)=h(t)⁎s(t), where s(t) is the stimulus time series.We
thresholded the p-value at p=0.005, and the activation maps are
shown in Fig. 17. The activation maps constructed by our approach
are consistent with the maps obtained with a GLM.

Complex natural stimuli

We demonstrate here that our method can be used to analyze
fMRI datasets collected in natural environments where the subjects
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are bombarded with a multitude of uncontrolled stimuli that cannot
be quantified (Golland et al., 2007; Hason et al., 2004; Haynes and
Rees, 2006; Malinen et al., 2007; Meyer and Stephens, 2008).
During such experiments, the subjects are submitted to an
abundance of concurrent sensory stimuli, which makes the analysis
with inferential methods impossible. Exploratory techniques can
help unravel the different neural processes involved during the
experiments (Malinen et al., 2007). Unlike ICA, our approach does
not posit the existence of a mixture model. Our approach merely
explores the connectivity in the dataset, and proposes a new
parameterization that preserves connectivity.

The Experience Based Cognition competition (EBC) (University
of Pittsburgh, 2007) offers an opportunity to study complex
responses to natural environments. The EBC datasets comprise
three 20-min runs (704 TRs in each run) of subjects interacting in an
urban virtual reality environment. Subjects were audibly instructed
to complete three search tasks in the environment: looking for
weapons (but not tools) taking pictures of people with piercing (but
not others), or picking up fruits (but not vegetables). The data was
collected with a 3T EPI scanner (TR=1.75 s, xy dimension: 64×64,
voxel size=3.28×3.28 mm, 34 slices with a thickness of 3.5 mm).
We analyze the second runs of subjects 14 and 13. For each subject,
the matrix X is composed of N=4843 intra-cranial voxels at T=704
TRs. We first remove the non-regionally specific variance captured
by the first eigenmodes of a singular value decomposition of the
dataset. We then compute ϕk, k=2,…10 using nn=100 and
σ=2×minib j||xi−xj||. After embedding the dataset into four
dimensions, we cluster the voxels. Figs. 18 and 20 display the
datasets after embedding. Because we cannot display four dimen-
sions, we show the projections of the dataset on three consecutive
coordinates. All the coordinates contribute to the spread the dataset
along elongated arms, which facilitates the clustering. Voxels that do
not correspond to the background activity (the maroon cluster in Figs.
18 and 20) are superimposed on anatomically registered structural
images and colored according to their cluster label (see Figs. 19 and
21). For both subjects, the clusters are connected regions (see Figs. 19
and 21), compactly organized around functional areas related to the
processing of visual, and auditory stimuli (music, cellphone ringing,
dog roaring) in the virtual environment. It is important to emphasize
that our method never enforces any form of spatial proximity, and is
purely based on functional connectivity.

For subject 14 (Fig. 19), the orange cluster corresponds to
activation in the calcarine cortex associated with V1/V2 repre-
sentations of the lower visual fields, while the light blue cluster
corresponds to representations of the upper visual fields. Activa-
tion in lateral areas (visual motion areas, MT/V5) is also present, as
well as activity in the posterior convexial cortex (area VP). The
activation is predominantly in the right hemisphere. Interestingly,
the two clusters located in the visual cortex (light blue and orange)
have very similar ϕ3 and ϕ4 coordinates (see Fig. 18-left). The
cyan cluster corresponds to activation in the right frontal gyrus
(Broca area) associated with language comprehension. The yellow
clusters are located in the right and left superior temporal gyri and
medial temporal gyri (Wernicke area). These regions correlate with
activation in the auditory cortex and language areas. Finally, the dark
blue cluster corresponds to activation in the prefrontal cortex. A very
similar pattern of activity (Fig. 21) was obtained for subject 13. The
Fig. 19. Subject 14. Top: V1/V2 (orange); representations of the upper visual field
cortex (dark blue).
blue and orange clusters, located in the calcarine cortex, correspond
to V1 and V2 areas. Again, these two clusters, both located in the
visual cortex, have similar ϕ2 and ϕ6 coordinates. The green cluster
is located in the medial temporal gyrus (Wernicke area) and is
associated with language processing. We replaced the embedding
constructed by our method with the parametrization produced by
PCA, using the same pre-processing steps. PCA was unable to
produce any meaningful activation maps (results not shown). In fact,
the clustering would usually not converge. Interestingly, the
activation maps obtained with these natural stimuli are very similar
to the extrinsic network, found by Golland et al. (2007), that is
composed of areas dedicated to the processing of sensory
information: auditory, visual, somatosensory and language.

Discussion

We proposed a new method to compute a low-dimensional
embedding of an fMRI dataset. The embedding preserves the local
functional connectivity between voxels, and can be used to cluster
the time series into coherent groups. Our approach, based on a
spectral decomposition of commute time, appears to be more robust
than a method based on the computation of the geodesic distance
between time series (Tenenbaum et al., 2000). Our approach is able
to detect independently visual areas (V1/V2, V5/MT), auditory and
language areas that are recruited when subjects interacted in an
urban virtual reality environment. We believe that this approach
offers a new approach for the analysis of natural stimuli. The method
still requires the visual inspection of the spatial patterns of
activations. This is a standard limitation of exploratory methods.
We are currently exploring methods to combine our approach with
standard functional atlases.
Choice of the parameters

There are only two parameters that determine the embedding: nn
the number of nearest neighbors and the scaling factor σ. We
described in The connectivity graph: A network of functionally
correlated voxels a universal choice for σ. The number of nearest
neighbors can also be chosen according to a universal strategy, nn
can be assigned to the largest power of ten smaller than the number
of time samples (TRs) in the time series. For instance, we used nn=7
and nn=9 for the event-related and block design datasets,
respectively. The analysis of the EBC datasets that contain 704
TRs each required a much larger number of nearest neighbors:
nn=100.

Computational complexity

The complexity of our method is determined by the combined
complexity of the nearest neighbor search and the eigenvalue
problem. We use a brute force approach to search for nearest
neighbors. We use the restarted Arnoldi method for sparse matrices
implemented by the Matlab function eigs to solve the eigenvalue
problem. The algorithm requires NOðKÞ þ OðK2Þ storage, and
OðNK2Þ þ OðK3Þ computations. Our MATLAB code will be made
available shortly from our webpage.
s (light blue); Broca area (cyan). Bottom: Wernicke area (yellow); prefrontal



Fig. 20. Subject 13: views of the embedded dataset using ϕ2, ϕ3, ϕ6 (left), ϕ3, ϕ6, ϕ8 (center), and ϕ6 , ϕ8 , ϕ2 (right). The labels are obtained after clustering the datasets into five clusters. The background activity
(maroon cluster) is centered around 0.
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Appendix

The hitting time satisfies the following one-step equation,

Ei Tj
� � ¼ 1þ

X
k;kpj

Pi;kEi Tk½ �: ð12Þ

Iterating this equation yields an expression of Ei [Tj] in terms of
powers of P. Let us define the fundamental matrix (Bremaud, 1999),

Z ¼ Iþ
X
kz1

Pk �Π: ð13Þ

then we have,

Ei Tj
� � ¼ Zj; j � Zi; j

� �
=pj: ð14Þ

The proof is a straightforward consequence of (12), and can be
found in (Bremaud, 1999). Note that Z=(I− (P−Π))−1 is also the
Green function of the Laplacian, which explains the connection
with the graph Laplacian. We can consider the eigenvectors ϕ1,…,
ϕT of the symmetric matrix

D
1
2PD�1

2; ð15Þ
and write P in (14) in terms of the eigenvectors. We obtain

j i; jð Þ ¼
XT
k¼2

1
1� kk

/k ið Þffiffiffiffi
pi

p � /k jð Þffiffiffiffi
pj

p
 !2

: ð16Þ

Finally, we note that D1/2PD−1/2 =D−1/2WD−1/2.
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