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Motivation and Goals

Motivation Discrimination between two brain states.

Task

Rest

Right hand

Left hand

Abnormal

Normal

Goal Extraction of sources related to a specific state or event by
decreasing the effect of unrelated sources like background activity,
noise, etc.
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Review Common Spatial Pattern (CSP)

Review

First proposed by Fukunaga and Koontz in 1970.
Introduced in the field of EEG analysis by Koles et al. in 1990.
Multidimensional observations (e.g. electrodes in EEG)
Applications

Brain Computer Interface (BCI)
Identification of abnormal EEG patterns

CSP computes linear combination of observations which
maximizes the variance difference between the two classes.
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Review Common Spatial Pattern (CSP)

Review
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Λ : the diagonal matrix of eigenvalues.
The eigenvalues are ranked in decreasing order i.e. according to
extracted source similarity with the 1st class time courses.
CSP relates with source separation based on non-stationarity of
sources (see Pham and Cardoso, 2001).
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Method Labeling
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Method Labeling

Labeling Results
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Method Common Spatial Pattern (CSP)
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Method Common Spatial Pattern (CSP)

CSP Results

Data Labeling

Source
Separation

(CSP)

Source
Selection

Feature
Extraction

Pareto
Optimization

First Class
Nodes

X X1,X2

Λ

A

11/22



Method Source Selection

Source Selection

Eigenvalues can be used as a measure of the relevancy of the
sources to the first class.

λ1 > λ2 > · · ·λi∗ > · · · > λN

λ1 > λ2 > · · ·λi∗ > · · · > λN

How to choose the number of relevant sources?
Interpret λi as a membership probability.

p(si ∈ ω1) =
λi∑
j λj

Choose i∗ which minimizes the overall probability of error.
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Method Source Selection

Source Selection

Choose i∗ which minimizes the overall probability of error.

i∗ = 3
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Method Source Selection

Source Selection

Eigenvalues can be used as a measure of the relevancy of the
sources to the first class.

λ1 > λ2 > · · ·λi∗ > · · · > λN

How to choose the number of relevant sources?
Interpret λi as a membership probability.

p(si ∈ ω1) =
λi∑
j λj

Choose i∗ which minimizes the overall probability of error.

ps(i) = p(si ∈ ω1) =

{
λi∑
j λj

i = 1, · · · , i∗
0 i = i∗ + 1, · · · ,N
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Method Feature Extraction

Feature Extraction

The relevant probability of each node (electrode lead) to the first
class (IED regions) via each sources can be defined as:

p(xi
∣∣sj ) =

a2
ij∑N

j=1 a2
ij

Using the mixing model xi =
∑N

j=1 aijsj .

pi =
[
p(xi

∣∣sj )p(sj ∈ ω1)
]
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Method Feature Extraction

Feature Extraction

×

p(xi

∣∣∣sj ) =
a2
ij∑N

j=1 a2
ij

p(si ∈ ω1) =

{ λi∑
j λj

i = 1, · · · , i∗

0 i = i∗ + 1, · · · ,N

pi =
[
p(xi

∣∣∣sj )p(sj ∈ ω1)
]
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Method Feature Extraction
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Results Results

Pareto Optimization Results

P1 antHC postHC amyg pHcG mTP f’11
visually inspected SOZ × × × × ×
DCG × × ×
CSP × × × × × ×
P2 antHC postHC amyg pHcG
visually inspected SOZ × × × ×
DCG ×
CSP ×
P3 antHC postHC pHcG
visually inspected SOZ × × ×
DCG × ×
CSP × × ×
P4 antHC postHC amyg entCx mTP
visually inspected SOZ × × × × ×
DCG × × × ×
CSP × ×
P5 midInsG
visually inspected SOZ ×
DCG ×
CSP ×

amyg: amygdala; ant/post/m: anterior/posterior/mesial; CG: cingulate gyrus; entCx: entorhinal cortex; HC: hippocampus; Ins:
insula; midInsG: middle short gyrus of insula; pHcG: parahippocampal gyrus; TP: temporal pole;
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Results Results

Comparison Results

Precision Sensitivity
CSP DCG CSP DCG

p1 83.3 100 100 60
p2 100 100 25 25
p3 100 100 100 67
p4 100 100 40 80
p5 100 100 100 100

mean 96.6 100 73 66.4
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Conclusion

Conclusion

Basically, this method is well suited for separating the
discriminative sources between two brain states: here, IED and
non-IED.
The CSP method is fast and simple.
The method is robust provided that covariance matrices are
accurately estimated.
The estimated IED regions are congruent with the visually
inspected SOZ by the epileptologist.
Future work: automatic detection of IED and non-IED time
intervals.
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