Common Spatial Pattern: Application on the Identification of Brain Regions Involved in Epilepsy

Samareh Samadi

Directors:

Christian JUTTEN

Hamid SOLTANIAN-ZADEH

GIPSA-lab, Université de Grenoble, Grenoble, France

Control and Intelligent Processing Center of Excellence (CIPCE) School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

Great thanks to Ladan Amini for her significant contribution.

March 18, 2011, NICOSIA, Grenoble, France

イロト イヨト イヨト イヨト

.

Table of contents

Review

- Common Spatial Pattern (CSP)
- 2 Method
 - Labeling
 - Common Spatial Pattern (CSP)
 - Source Selection
 - Feature Extraction
 - Pareto Optimization

3

Results

Results

Conclusion

Motivation Discrimination between two brain states.

Goal Extraction of sources related to a specific state or event by decreasing the effect of unrelated sources like background activity, noise, etc.

Motivation Discrimination between two brain states.

Goal Extraction of sources related to a specific state or event by decreasing the effect of unrelated sources like background activity, noise, etc.

Motivation Discrimination between two brain states.

Goal Extraction of sources related to a specific state or event by decreasing the effect of unrelated sources like background activity, noise, etc.

Review

- First proposed by Fukunaga and Koontz in 1970.
- Introduced in the field of EEG analysis by Koles et al. in 1990.
- Multidimensional observations (e.g. electrodes in EEG)
- Applications
 - Brain Computer Interface (BCI)
 - Identification of abnormal EEG patterns
- CSP computes linear combination of observations which maximizes the variance difference between the two classes.

Review

Review

$$\max_{\mathbf{W}} \frac{\mathbf{W}^{\mathsf{T}} \widehat{\mathbf{R}}^{1} \mathbf{W}}{\mathbf{W}^{\mathsf{T}} \widehat{\mathbf{R}}^{2} \mathbf{W}} s.t. \|\mathbf{W}\| = 1$$

Rayleigh – Ritz Theorem ↓

$$\textit{GEVD}(\widehat{\textbf{R}}^1, \widehat{\textbf{R}}^2) : \widehat{\textbf{R}}^1 \textbf{W} = \widehat{\textbf{R}}^2 \textbf{W} \boldsymbol{\Lambda}$$

- Λ : the diagonal matrix of eigenvalues.
- The eigenvalues are ranked in decreasing order i.e. according to extracted source similarity with the 1st class time courses.
- CSP relates with source separation based on non-stationarity of sources (see Pham and Cardoso, 2001).

Method

Method

Labeling

Data Segmentation

non-IED (2nd state)

Labeling

Labeling Results

Common Spatial Pattern (CSP)

Method Common Spatial Pattern (CSP)

CSP Results

Source Selection

• Eigenvalues can be used as a measure of the relevancy of the sources to the first class.

$$\lambda_1 > \lambda_2 > \cdots > \lambda_{i^*} > \cdots > \lambda_N$$

• Eigenvalues can be used as a measure of the relevancy of the sources to the first class.

 $\lambda_1 > \lambda_2 > \cdots > \lambda_{i^*} > \cdots > \lambda_N$

• How to choose the number of relevant sources?

 Eigenvalues can be used as a measure of the relevancy of the sources to the first class.

$$\lambda_1 > \lambda_2 > \cdots > \lambda_{i^*} > \cdots > \lambda_N$$

- How to choose the number of relevant sources?
- Interpret λ_i as a membership probability.

$$p(\mathbf{s}_i \in \omega_1) = rac{\lambda_i}{\sum_j \lambda_j}$$

 Eigenvalues can be used as a measure of the relevancy of the sources to the first class.

$$\lambda_1 > \lambda_2 > \cdots > \lambda_{i^*} > \cdots > \lambda_N$$

- How to choose the number of relevant sources?
- Interpret λ_i as a membership probability.

$$p(\mathbf{s}_i \in \omega_1) = rac{\lambda_i}{\sum_j \lambda_j}$$

• Choose *i** which minimizes the overall probability of error.

Choose i^* which minimizes the overall probability of error.

Choose i^* which minimizes the overall probability of error.

Choose i^* which minimizes the overall probability of error.

• Eigenvalues can be used as a measure of the relevancy of the sources to the first class.

$$\lambda_1 > \lambda_2 > \cdots > \lambda_{i^*} > \cdots > \lambda_N$$

- How to choose the number of relevant sources?
- Interpret λ_i as a membership probability.

$$p(\mathbf{s}_i \in \omega_1) = rac{\lambda_i}{\sum_j \lambda_j}$$

• Choose *i** which minimizes the overall probability of error.

$$\mathbf{p}_{s}(i) = p(\mathbf{s}_{i} \in \omega_{1}) = \begin{cases} \frac{\lambda_{i}}{\sum_{j} \lambda_{j}} & i = 1, \cdots, i^{*} \\ 0 & i = i^{*} + 1, \cdots, N \end{cases}$$

Feature Extraction

• The relevant probability of each node (electrode lead) to the first class (IED regions) via each sources can be defined as:

$$p(\mathbf{x}_i | \mathbf{s}_j) = \frac{a_{ij}^2}{\sum_{j=1}^N a_{ij}^2}$$

Using the mixing model $\mathbf{x}_i = \sum_{j=1}^{N} a_{ij} \mathbf{s}_j$.

$$\mathbf{p}_i = \left[p(\mathbf{x}_i \, \big| \, \mathbf{s}_j \,) p(\mathbf{s}_j \in \omega_1)
ight]$$

16/22

Feature Extraction

Feature Extraction

Feature Extraction

Feature Extraction

Pareto Optimization

Pareto Optimization Results

P1	antHC	postHC	amyg	pHcG	mTP	f'11
visually inspected SOZ	×	×	×	×	×	
DCG	×		×	×		
CSP	×	×	×	×	×	×
P2	antHC	postHC	amyg	pHcG		
visually inspected SOZ	×	×	×	×		
DCG	×					
CSP	×					
P3	antHC	postHC	pHcG			
visually inspected SOZ	×	×	×			
DCG	×	×				
CSP	×	×	×			
P4	antHC	postHC	amyg	entCx	mTP	
visually inspected SOZ	×	×	×	×	×	
DCG	×	×	×	×		
CSP	×	×				
P5	midInsG					
visually inspected SOZ	×					
DCG	×					
CSP	×					

amyg: amygdala; ant/post/m: anterior/posterior/mesial; CG: cingulate gyrus; entCx: entorhinal cortex; HC: hippocampus; Ins: insula; midlnsG: middle short gyrus of insula; pHcG: parahippocampal gyrus; TP: temporal pole;

<u> 1) 4 권) 4 달) 4 달) 달 / 9 (</u> 20/22

Pareto Optimization Results

P1	antHC	postHC	amyg	pHcG	mTP	f'11
visually inspected SOZ	×	×	×	×	×	
DCG	×		×	×		_
CSP	×	×	×	×	×	(\times)
P2	antHC	postHC	amyg	pHcG		· ·
visually inspected SOZ	×	×	×	×		
DCG	×					
CSP	×					
P3	antHC	postHC	pHcG			
visually inspected SOZ	×	×	×			
DCG	×	×				
CSP	×	×	×			
P4	antHC	postHC	amyg	entCx	mTP	
visually inspected SOZ	×	×	×	×	×	
DCG	×	×	×	×		
CSP	×	×				
P5	midIm C					
	mamsG					
visually inspected SOZ	×					
visually inspected SOZ DCG	× ×					

amyg: amygdala; ant/post/m: anterior/posterior/mesial; CG: cingulate gyrus; entCx: entorhinal cortex; HC: hippocampus; Ins: insula; midlnsG: middle short gyrus of insula; pHcG: parahippocampal gyrus; TP: temporal pole;

Results

Pareto Optimization Results

P1	antHC	postHC	amyg	pHcG	mTP	f'11
visually inspected SOZ	×	×	×	×	×	
DCG	×		×	×		
CSP	×	×	×	×	×	×
P2	antHC	postHC	amyg	pHcG		
visually inspected SOZ	×	×	×	×		
DCG	×					
CSP	×					
P3	antHC	postHC	pHcG			
visually inspected SOZ	×	×	×			
DCG	×	×				
CSP	×	×	×			
P4	antHC	postHC	amyg	entCx	mTP	
visually inspected SOZ	×	×	(\times)	(\times)	(\times)	
DCG	×	×	×	×	<u> </u>	
CSP	×	×				
P5	midInsG					
visually inspected SOZ	×					
DCG	×					
CSP	×					

amyg: amygdala; ant/post/m: anterior/posterior/mesial; CG: cingulate gyrus; entCx: entorhinal cortex; HC: hippocampus; Ins: insula; midlnsG: middle short gyrus of insula; pHcG: parahippocampal gyrus; TP: temporal pole;

<u>□ ▶ ∢ ति ▶ ∢ ∃ ▶ ∢ ∃ ▶ ∃ √) Q (</u> 20/22

Results

Comparison Results

	Prec	sision	Sensitivity		
	CSP	DCG	CSP	DCG	
p1	83.3	100	100	60	
p2	100	100	25	25	
p3	100	100	100	67	
p4	100	100	40	80	
p5	100	100	100	100	
mean	96.6	100	73	66.4	

Conclusion

- Basically, this method is well suited for separating the discriminative sources between two brain states: here, IED and non-IED.
- The CSP method is fast and simple.
- The method is robust provided that covariance matrices are accurately estimated.
- The estimated IED regions are congruent with the visually inspected SOZ by the epileptologist.
- Future work: automatic detection of IED and non-IED time intervals.