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Outline

A short introduction to spectral embedding of graphs and to
spectral clustering

Spectral clustering applied to fMRI data
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Material

X. Shen and F. Meyer. Low-Dimensional Embedding of fMRI
Datasets. NeuroImage 41 (2008).
http://ecee.colorado.edu/~fmeyer/Pub/neuroimage08.pdf

F. Meyer and G. Stephens. Locality and Low-dimensions in
the Prediction of Natural Experience from fMRI. In NIPS
2008.

François Meyer’s (formerly at IRISA) publications:
http://ecee.colorado.edu/~fmeyer/publications.html

Additional material: Course on Data Analysis and Manifold
Learning. http://perception.inrialpes.fr/people/

Horaud/Courses/DAML_2011.html
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An Example
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Which Clustering Method to Use?

Techniques such as K-means or Gaussian mixtures will not
work well because the clusters are neither spherical nor
Gaussian.

One needs to apply a non-linear transformation to the data
such that “curved” clusters are transformed into “blobs”

The general idea of spectral clustering:
1 Build an undirected weigthed graph and its Laplacian matrix
2 Map the graph’s vertices into the spectral space, spanned by

the eigenvectors of the Laplacian matrix.
3 Perform K-means in the spectral space
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Basic Graph Notations and Definitions

We consider simple graphs (no multiple edges or loops),
G = {V, E}:

V(G) = {v1, . . . , vn} is called the vertex set with n = |V|;
E(G) = {eij} is called the edge set with m = |E|;
An edge eij with a positive weight ωij connects vertices vi

and vj if they are adjacent or neighbors. One possible
notation for adjacency is vi ∼ vj ;

The degree of a node vi is defined by di, di =
∑

vi∼vj
ωij .
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Real-valued functions on graphs

We consider real-valued functions on the set of the graph’s
vertices, f : V −→ R. Such a function assigns a real number
to each graph node.

f is a vector indexed by the graph’s vertices, hence f ∈ Rn.

Notation: f = (f(v1), . . . , f(vn)) = (f1, . . . , fn) .
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Matrices of an Undirected Weighted Graph

We consider undirected weighted graphs; Each edge eij is
weighted by wij > 0. We obtain:

Ω :=


Ωij = wij if there is an edge eij
Ωij = 0 if there is no edge
Ωii = 0

The degree matrix: D = Diag[di]
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The Laplacian on an undirected weighted graph

L = D−Ω

The Laplacian as an operator:

(Lf)(vi) =
∑

vj∼vi

wij(f(vi)− f(vj))

As a quadratic form:

f>Lf =
1
2

∑
eij

wij(f(vi)− f(vj))2

L is symmetric and positive semi-definite ↔ wij ≥ 0.

L has n non-negative, real-valued eigenvalues:
0 = λ1 ≤ λ2 ≤ . . . ≤ λn.
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Spectral Decomposition

Mapping a function onto itself: Lu = λu
(Eigenvalue/eigenvector pairs).

Spectral decomposition: L = UΛU> with UU> = I.

Let U be:

U =

 1 u12 . . . u1k . . . u1n
...

...
...

1 un2 . . . unk . . . unn

 (1)

Each column of U, uk = (u1k . . . uik . . . unk)>, 2 ≤ k ≤ n is
an eigenvector such that u>k 1 = 0
By omitting the first eigenvalue/eigenvector pair
λ1 = 0/u1 = 1, we have:

L =
n∑

k=2

λkuku
>
k (2)
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Commute-time Embedding

The Moore-Penrose pseudo-inverse of the Laplacian (we
simply omit the zero eigenvalue):

L† =
n∑

k=2

1
λk
uku

>
k (3)

Spectral decomposition:

L† = UΛ−1U> with Λ−1 = Diag[λ−1
2 . . . λ−1

k . . . λ−1
n ]

L† =
(
Λ−

1
2 U>

)> (
Λ−

1
2 U>

)
= X>X
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Properties of the Commute-time Embedding

X = Λ−
1
2 U> =

[
x1 . . . xi . . .xn

]
xi =

(
λ
−1/2
2 ui2 . . . λ

−1/2
n uin

)>
‖xi‖2 =

n∑
k=2

λ−1
k u2

ik

‖xi − xj‖2 =
n∑

k=2

λ−1
k (uik − ujk)2

X1 = 0

ΣX =
1
n

XX> =
1
n

Diag[λ−1
2 , . . . , λ−1

n ]
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Spectral Clustering

Input: Laplacian L and the number K of principal
eigenvalue/eigenvector pairs

Output: Cluster C1, . . . , Ck.

1 Compute X using the first K eigenvalue/eigenvector pairs.

2 Cluster the columns xi, i = 1, . . . , n of X into K clusters
using the K-means algorithm (or your preferred clustering
method).
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Low-dimensional embedding of fMRI

fMRI provides a large scale measurement of neuronal activity
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fMRI data

Each voxel vi generates a time series

xi =
(
xi(1) . . . xi(T )

)> ∈ RT
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A network of functionally correlated voxels

A connectivity graph is formed with the standard approach:

Wij =
{

exp
(
−‖xi − xj‖2/σ2

)
if vi ∼ vj

0 otherwise

The Euclidean distance between time series:

‖xi − xj‖2 =
T∑

t=1

(xi(t)− xj(t))
2

Choice for σ:
σ = 2 min

i<j
‖xi − xj‖

Choice for nn (nearest neighbor): user defined and varies from
7 to ... 100.
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Matrices

Diagonal degree matrix: D(i, i) =
∑

j Wi,j

Transition matrix: P = D−1W

Transition probabilities:

Pi,j = P(i, j) =
Wi,j∑
j Wi,j

It is a row-stochastic matrix:
∑

j Pi,j = 1
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Random walk and commute-time

Consider a random walk on the graph denoted by Zn: if the
walk is at vi it jumps to one of its neighbors vj with
probability Pi,j .

if vi and vj are in the same functional area and vi and vk are
in different functional areas, we expect that Pi,j � Pi,k.

The average hitting time measures the number of steps that it
takes for a random walk starting in vi to hit vj for the first
time:

H(vi, vj) = Ei[Tj ] with Tj = min{n ≥ 0;Zn = j}

The hitting time is not symmetric, use the commute time
instead:

κ(vi, vj) = H(vi, vj) +H(vj , vi) = Ei[Tj ] + Ej [Ti]
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The commute time distance in the spectral domain

Let (λk,φk)N
k=1 be the eigenvalue-eigenvector pairs of matrix

P that can be easily computed because D1/2PD−1/2 is a real
symmetric matrix. Moreover (see Lecture #3) we have:

−1 ≤ λN ≤ . . . ≤ λk ≤ . . . ≤ λ1 = 1

The commute time distance is:

κ(xi,xj)2 =
n∑

k=2

1
1− λk

(
φk(i)
√
πi
− φk(j)
√
πj

)

π = (π1 . . . πi . . . πN )> is the eigenvector P>π = π with:

πi =
di∑

i,j Wi,j
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Embedding

The initial time series can now be embedded using the
mapping: xi −→ Ψ(xi), i.e., RT → R

K :

Ψ(xi) =
1
√
πi

(
φk(i)√
1− λ2

. . .
φk(i)√
1− λk

. . .
φk(i)√
1− λn

)>
This is strictly equivalent to the commute-time embedding
based on the normalized graph Laplacian (see Lecture #3).
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Choosing the dimension

Remind that each voxel in the brain corresponds to a graph
node and there is a time series at each voxel:

X =


x1(1) . . . x1(t) . . . x1(T )

...
...

...
xi(1) . . . xi(t) . . . xi(T )

...
...

...
xN (1) . . . xN (t) . . . xN (T )


Each column x(t) in this matrix is a scalar function defined
over the graphs’ vertices. It can be decomposed using the
eigenvectors:

x(t) =
n∑

k=2

〈x(t),φk〉φk + r(t)
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Choosing the dimension

This can be written as:

x̂(t) =
n∑

k=2

〈x(t),φk〉φk =
n∑

k=2

xk(t)φk

Therefore, each entry i (at each brain location or graph
vertex) of this approximated vector is:

x̂i(t) =
n∑

k=2

xk(t)φk(i)

The discrepancy between the initial observations and their
approximate representation is:

εi(K) =
∑T

t=1(xi(t)− x̂i(t))2∑T
t=1 x

2
i (t)
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Choosing the dimension

The authors suggest to average εi(K) over the voxels lying in
a ”functional” region, and to take the max over all these
average values.

It is not clear what is a functional region, since this is what it
is searched for and why the average is selected.
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Segmentation using K-means

The authors notice that the embedding has a star-like shape.
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Segmentation using K-means

The ”arms” correspond to:

activated time series or
strong physiological artifacts

The center blob corresponds to ”background activity”

The embedded data are projected on a hyper-sphere of
dimension K.

The background is spread over the sphere.

The K-means algorithm is applied to the spherical data
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Event related dataset

Study of age-related changes in functional anatomy

2050 time series.
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Spectral embedding/clustering results
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Results obtained with PCA and ISOMAP
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Activation maps
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Discussion

The paper uses an extremely well studied method in machine
learning.

The method could also be applied to other types of brain
data, such as EEG for discovering crossmodal bindings

A more general approach would be to consider graph kernels
or diffusion kernels and to apply kernel methods to this type
of data.
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