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Outline

@ A short introduction to spectral embedding of graphs and to
spectral clustering

@ Spectral clustering applied to fMRI data
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Material

@ X. Shen and F. Meyer. Low-Dimensional Embedding of fMRI
Datasets. Neurolmage 41 (2008).
http://ecee.colorado.edu/~fmeyer/Pub/neuroimage08. pdf

o F. Meyer and G. Stephens. Locality and Low-dimensions in
the Prediction of Natural Experience from fMRI. In NIPS
2008.

e Francois Meyer's (formerly at IRISA) publications:
http://ecee.colorado.edu/~fmeyer/publications.html

o Additional material: Course on Data Analysis and Manifold
Learning. http://perception.inrialpes.fr/people/
Horaud/Courses/DAML_2011.html
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An Example
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Which Clustering Method to Use?

@ Techniques such as K-means or Gaussian mixtures will not
work well because the clusters are neither spherical nor
Gaussian.

@ One needs to apply a non-linear transformation to the data
such that “curved” clusters are transformed into “blobs”
@ The general idea of spectral clustering:

© Build an undirected weigthed graph and its Laplacian matrix

@ Map the graph’s vertices into the spectral space, spanned by
the eigenvectors of the Laplacian matrix.

@ Perform K-means in the spectral space
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Basic Graph Notations and Definitions

We consider simple graphs (no multiple edges or loops),
Gg={V, &}
e V(G) ={v1,...,v,} is called the vertex set with n = |V|;
o £(G) = {e;;} is called the edge set with m = |£];

@ An edge ¢e;; with a positive weight w;; connects vertices v;
and v; if they are adjacent or neighbors. One possible
notation for adjacency is v; ~ v;;

@ The degree of a node v; is defined by d;, d; = > Wij

Vi~V 1]
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Real-valued functions on graphs

@ We consider real-valued functions on the set of the graph's
vertices, f : V — IR. Such a function assigns a real number
to each graph node.

@ f is a vector indexed by the graph's vertices, hence f € R".

e Notation: f = (f(v1),..., f(vn)) = (f1,.--s fn) -

Jfv)=2 Jf(v2)=3.5

J(vs)=4.1 Jf(v9)=5
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Matrices of an Undirected Weighted Graph

e We consider undirected weighted graphs; Each edge ¢;; is
weighted by w;; > 0. We obtain:

2;; = w;; if there is an edge ¢;;
Q:=4¢ ;=0 if there is no edge
Q; =0

@ The degree matrix: D = Diag|d;]
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The Laplacian on an undirected weighted graph

L=D-Q

The Laplacian as an operator:

(L)) = D wi(fvi) = f(v;))

vj g

As a quadratic form:

FTLE = 53w (wi) - f(2)?

€ij

L is symmetric and positive semi-definite < w;; > 0.

L has n non-negative, real-valued eigenvalues:
0= <A <... <\
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Spectral Decomposition

@ Mapping a function onto itself: Lu = Au
(Eigenvalue/eigenvector pairs).
@ Spectral decomposition: L = UAU " with UUT =1

o Let U be:

1 ui2 ... Uk ... Uln
U= 5 z (1)

1 upo ... Upk .- Upp

@ Each column of U, uj = (u1p ... Ui ... Unk) ', 2< k <nis
an eigenvector such that u] 1 =0

e By omitting the first eigenvalue/eigenvector pair
A1 =0/up = 1, we have:

L= Z )\kuku,;r (2)
k=2
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Commute-time Embedding

@ The Moore-Penrose pseudo-inverse of the Laplacian (we
simply omit the zero eigenvalue):

"1
— 3
Z A Uk:“k (3)
k=2
@ Spectral decomposition:

L' = UAT'U" with A~ = Diag[\; ' A ALY

Lt = (A—%UT)T (A—%UT)
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Properties of the Commute-time Embedding

X:A_%UT: [ Ty ... XT; ..., ]
-
r;, = <)\;1/2ui2 )\;1/21%”)
||:Dz||2 = Z/\Elu?k
k=2
||mz_mj||2 = Z/\k (Uzk_ujk)
k=2
X1 =0
1
Yx = —XX' = -Diag\y',...,\ ]
n
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Spectral Clustering

@ Input: Laplacian L and the number K of principal
eigenvalue/eigenvector pairs

@ Output: Cluster C,...,C.

@ Compute X using the first K eigenvalue/eigenvector pairs.

@ Cluster the columns x;,7 =1,...,n of X into K clusters
using the K-means algorithm (or your preferred clustering
method).
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Low-dimensional embedding of fMRI

o fMRI provides a large scale measurement of neuronal activity
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fMRI data

@ Each voxel v; generates a time series
T
xT; = ( scz(l) .%'Z(T) ) eRT
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A network of functionally correlated voxels

A connectivity graph is formed with the standard approach:

W exp (—||:I)Z'—£L'jH2/U2) if v; ~ v
K 0 otherwise
@ The Euclidean distance between time series:

T

|z — a5 = Y (wilt) — (1)

t=1

Choice for o:

= 2mi .
o gg.lez x|

Choice for n,, (nearest neighbor): user defined and varies from
7 to ... 100.
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Matrices

Diagonal degree matrix: D(i,i) =3, Wi ;
Transition matrix: P = D™1W

@ Transition probabilities:

Wz’]
> Wi

It is a row-stochastic matrix: » . P ; =1
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Random walk and commute-time

o Consider a random walk on the graph denoted by Z,: if the
walk is at v; it jumps to one of its neighbors v; with
probability F; ;.

e if v; and v; are in the same functional area and v; and vy, are
in different functional areas, we expect that P; ; > P, ;.

@ The average hitting time measures the number of steps that it
takes for a random walk starting in v; to hit v; for the first
time:

H(vi,v;) = E;[T;] with T; = min{n > 0; Z,, = j}

@ The hitting time is not symmetric, use the commute time
instead:

K(vi,v) = H(vi,v5) + H(vj,v;) = Ei[T}] + Ej[T3]
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The commute time distance in the spectral domain

o Let (A, @) be the eigenvalue-eigenvector pairs of matrix
P that can be easily computed because DY2PD~1/2 is a real
symmetric matrix. Moreover (see Lecture #3) we have:

1Ay <. <M< < =1

@ The commute time distance is:

n . .
1 )
n(asz)? =3 s <¢k( ) _ ¢k(])>
=2 'k Vi Al
o m=(m...m...7n) " is the eigenvector PT 7 = 7 with:
d;

T = =
' Z” Wi,

Radu Horaud Spectral Clustering of fMRI datasets



Embedding

@ The initial time series can now be embedded using the
mapping: x; — ¥(x;), i.e.,, RT — RX:

NER 0 (i) (i) )"
‘I’(wz)—\/ﬁ(\/lAZ"'\/l—Ak"'ﬂ>

@ This is strictly equivalent to the commute-time embedding
based on the normalized graph Laplacian (see Lecture #3).
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Choosing the dimension

@ Remind that each voxel in the brain corresponds to a graph
node and there is a time series at each voxel:

[ 2 (1) o z(t) ...z (T)
an() . oan(t) .. en(T) |

@ Each column () in this matrix is a scalar function defined
over the graphs’ vertices. It can be decomposed using the
eigenvectors:

n

x(t) =Y (x(t), dy) by + r(t)

k=2
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Choosing the dimension

@ This can be written as:

n

z(t) = Z(w(t), b)) b = Zwk(t)fi’k
k=2

k=2

Therefore, each entry i (at each brain location or graph
vertex) of this approximated vector is:

Ti(t) =) wp(t)pr(i)
k=2

@ The discrepancy between the initial observations and their
approximate representation is:

S (mi(t) — &i(1))?
E; K) =
(%) ZtT:1 x?(t)

Radu Horaud Spectral Clustering of fMRI datasets




Choosing the dimension

@ The authors suggest to average ¢;(K) over the voxels lying in
a "functional” region, and to take the max over all these
average values.

@ It is not clear what is a functional region, since this is what it
is searched for and why the average is selected.

Radu Horaud Spectral Clustering of fMRI datasets



Segmentation using K-means

@ The authors notice that the embedding has a star-like shape.
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Segmentation using K-means

@ The "arms" correspond to:

e activated time series or
e strong physiological artifacts

The center blob corresponds to "background activity”

The embedded data are projected on a hyper-sphere of
dimension K.

The background is spread over the sphere.

The K-means algorithm is applied to the spherical data
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Event related dataset

@ Study of age-related changes in functional anatomy

@ 2050 time series.
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Spectral embedding/clustering results
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Results obtained with PCA and ISOMAP
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Activation maps
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Discussion

@ The paper uses an extremely well studied method in machine
learning.

@ The method could also be applied to other types of brain
data, such as EEG for discovering crossmodal bindings

@ A more general approach would be to consider graph kernels
or diffusion kernels and to apply kernel methods to this type
of data.
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